N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

REPORT N.
 2013

- INSTALLATION SITE:

0

- HIGH MAST HEIGHT:

20 m

SUMMARY

-FOREWORD pag. 3

- GENERAL DESCRIPTION OF THE STRUCTURE 3
-STANDARDS 4
- MATERIALS PROPERTIES 5
- ASSESSMENTS OF LOADS 7
- CLASSIFICTION OF ACTIONS 7
- MODELING OF THE STRUCTURE AND OF THE CONSTRAINTS 8
-DESIGN LOADS 9
-DESIGN STRENGTH 10
- VERIFICATION REPORT 11
- DEFORMABILITY CHECK 12
- PERIOD OF VIBRATION 12
- WIND CALCULATION 13
- INPUT DATA 14
- DESIGN INTERNAL FORCES OF SECTIONS 18
- DESIGN STRENGTH OF SECTIONS 20
- CHECK OF SECTIONS 21
- INTERNAL FORCES AT THE BOTTOM OF THE MAST 23
- VERIFICATION OF FRICTION JOINTS 24
- BASE PLATE CHECK 25
- CHECK OF THE OPENING DOOR 29

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Italy

FOREWORD

The present document has been drafted according to the requirements of the Standards provided below. Analy sis, design and calculation has been drawn by the structural designer In accordance with best practice.

GENERAL DESCRIPTION OF THE STRUCTURE

The shaft of the high mast has a truncated cone shape with poly gonal cross section (16 sides), cut from a press folded metal sheet longitudinally welded according to standard UNI EN ISO 3834 with ty pe approval recognised by 'Istituto Italiano della Saldatura'.
The high mast consists of one or more sections to assemble on site with the 'slip-on-joint' method.
The bottom section is complete with a base plate for anchorage to the plinth through anchor bolts cast in place, it is also equipped with earthing device.
The shaft is made of S355 JR steel ty pe according to standard UNI EN 10025.
The base plate is made of S355 JR steel ty pe according to standard UNI EN 10025.
The whole frame is hot galv anized according to standard UNI EN ISO 1461-2009.

The mast is complete with a ladder with security cage, mass produced with a standard lenght of $3-5-6 \mathrm{~m}$ and fastened to the shaft with bolts.
As an alternative is installed a ladder with lock-slider, it is equipped with a resting platform placed every 10 m . Masts with changing height from 12 to 20 m are complete with resting stage with size of $1000 \times 620 \mathrm{~mm}$. The resting stage is equipped with anti-sleep floorboard, end-board, trap-door and banister 1 meter high. The head platform, in the shape of the rectangular frame, is equipped with anti-sleep floorboard, end-board, trap-door and banister. Sometimes the banister is complete with the coupling dev ices for lanterns placement. Otherwise on the top of the mast there is one or more cross bars for the positioning of lanterns.
As an alternative is installed a ladder with lock-slider, it is equipped with a resting platform placed every 10 m .

STANDARDS

. EN 1990	Eurocode : 'Basis of structural design'
EN 1991-1-1	Eurocode 1: 'Actions on structure - Part. 1-1
	General actions: densities, self-weight, imposed loads for buildings'
EN 1991-1-4	Eurocode 1: 'Actions on structure - Part. 1-4'
	General actions: wind actions'
EN 1993-1-1	Eurocode 3 : 'Design of steel structure - Part. 1-1
	General rules and rules for buildings'
EN 1993-1-8	Eurocode 3 : 'Design of steel structure - Part. 1-8
	Design of joints'
. EN 1997-1	Eurocode 7: 'Geotechnical design'

MATERIALS PROPERTIES

- SHAFT SHEET:

$-\mathrm{f}_{\mathrm{yk}}=$	$355 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{f}_{\mathrm{tk}}=$	$510 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{E}=$	$210.000 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{\rho}=$	$7.850 \mathrm{Kg} / \mathrm{m}^{3}$
$-\mathrm{v}=$	0.3

- ANCHOR BOLT

$-\mathrm{f}_{\mathrm{yk}}=$	$355 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{f}_{\mathrm{tk}}=$	$510 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{E}=$	$210.000 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{\rho}=$	$7.850 \mathrm{Kg} / \mathrm{m}^{3}$
$-\mathrm{v}=$	0.3

- BASE PLATE:

$-\mathrm{f}_{\mathrm{yk}}=$	$355 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{f}_{\mathrm{tk}}=$	$510 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{E}=$	$210.000 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{\rho}=$	$7.850 \mathrm{Kg} / \mathrm{m}^{3}$
$-\mathrm{v}=$	0.3

- CARPENTRY:

$-\mathrm{f}_{\mathrm{yk}}=$	$235 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{f}_{\mathrm{tk}}=$	$360 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{E}=$	$210.000 \mathrm{~N} / \mathrm{mm}^{2}$
$-\mathrm{\rho}=$	$7.850 \mathrm{Kg} / \mathrm{m}^{3}$
$-\mathrm{v}=$	0.3

steel grade S355 JR (UNI EN 10025)
nominal value of y eld strength
nominal v alue of ultimate tensile strength
modulus of elasticity
density
Poisson's ratio in elastic stage
steel grade S355 JR (UNI EN 10025)
nominal value of y eld strength
nominal value of ultimate tensile strength
modulus of elasticity
density
Poisson's ratio in elastic stage
steel grade S355 JR (UNI EN 10025)
nominal value of y eld strength
nominal value of ultimate tensile strength
modulus of elasticity
density
Poisson's ratio in elastic stage
steel grade S235 JR (UNI EN 10025)
nominal value of y eld strength
nominal value of ultimate tensile strength
modulus of elasticity
density
Poisson's ratio in elastic stage

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

- SAFETY MATERIAL FACTORS:

- $\mathrm{YMO}=$	1	cracking saf ety factor $-\mathrm{YM} 1=$
instability safety factor		
$-\mathrm{YM} 2=$	1.25	fracture saf ety factor
- NUTS AND BOLTS:	stainless steel A2 CLASS (UNI EN ISO 3506)	
- WELDING:	according to UNI EN ISO 3834	
UNI EN ISO 15609-1		

N.C.M. srI

ASSESSMENTS OF LOADS

The following loads and ov erloads are examined:
. foundation and structure on elevation mass
. lantern with their support, possible ladder and accessories self weight
. static and dy namic wind forces estimated according to EN 1991-1-1 and EN 1991-1-4
(areas exposed to wind of lanterns and accessories are considered, to computed area of the ladder exposed area of the shaft is increased of $6 \mathrm{~cm} / \mathrm{m}$)

CLASSIFICATION OF ACTIONS

Selfweight effects, vertical accidental loads into/out of alignement with mast are represented by a vertical forces sy stem:

- concentrated (lantern, support and different accessories weight)
- distributed along the shaft (mast mass and possible ladder)

Wind effects are represented by a system of static equivalent horizontal forces (following the wind direction) according to EN 1991-1-4.
Each force is given by:
$\mathrm{Fw}=\mathrm{Ce} \cdot \mathrm{Cp} \cdot \mathrm{Cd} \cdot \mathrm{Qb} \cdot \mathrm{S}$

where

. Ce = exposure factor, as a function of terrain topography, category site, height of structure above ground
. $\mathrm{Cp}=$ shape factor, as a function of geometry and tipology structure and its wind direction
. $\mathrm{Cd}=$ through the dy namic coefficient, we consider the reductive effects linked to the non-contemporaneity of the maximum local pressure and of amplifying effects caused by the structural vibrations. This coefficient is function of the vibration period, which is previously established:

| $\mathrm{Cd}=$ | 1.15 | |
| :--- | :--- | :--- | :--- |
| where | 2.08 s | period of vibration |

. $\mathrm{S}=$ projected area on the vertical plane normal to the direction of the wind
. $\mathrm{Qb}=$ design wind pressure

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

MODELING OF THE STRUCTURE AND OF THE CONSTRANTS

The structural analysis of the mast is conducted with the help of a computation code specifically drawn up to calculate this kind of structures.
The reliability of results has been validated by comparison with done by hand calculations and computer programs set up to solve static analy sis of three dimensional structure.
The undertaken analysis is linear static.
The structural system is represented by a vertical cantilever, changing cross section along the shaft.
The internal forces, axial and shear forces and bending moments, due to characteristic values of the actions for the above loading cases are calculated.
This calculation report is based on limite state principles. Factored loads effects (design loads) are compared with the resistance of the structure (design strength) reduced by a safety factor.
The design value of the effects of action is calculated from the combinations of action in conformity with EN 1990.
The second order effects are also considered by means of bending moments caused by vertical loads and horizontal movement due to the wind.
Characteristic values of permanent and variable loads with corresponding partial factor are indicated below.

DESIGN LOADS

COMBINATION OF ACTION (ULS verification): WIND

- $\operatorname{Ned}=\gamma_{G} \cdot G+\gamma_{P} \cdot P$
- $\operatorname{Ved}=\gamma_{w} \cdot W$
- Med $=\gamma_{G} \cdot M_{G}+\gamma_{P} \cdot M_{P}+\gamma_{w} \cdot M_{w}$
where
. Ned = design axial force
. Ved = design shear force
. Med = design bending moment
. $\mathrm{Y}_{\mathrm{G}}=$ partial load factor $=1.35$
. $\gamma_{P}=$ partial load factor $=1.35$
. $\mathrm{Yw}=$ wind partial load factor $=1.5$
. $G=$ self weight
. $\mathrm{P}=$ dead load
. W = wind shear force
. $M_{G}=$ self weight bending moment (2° order)
. $\mathrm{M}_{\mathrm{P}}=$ dead load bending moment (1° e 2° order)
. $\mathrm{M}_{\mathrm{w}}=$ wind bending moment

COMBINATION OF ACTION (SLS verification):

- $\operatorname{Ned}=\gamma_{G} \cdot G+\gamma_{P} \cdot P$
- $\operatorname{Ved}=Y_{w} \cdot W$
- Med $=\gamma_{G} \cdot M_{G}+\gamma_{P} \cdot M_{P}+\gamma_{w} \cdot M_{w}$
where
. Ned = design axial force
. Ved = design shear force
. Med = design bending moment
- $\mathrm{VG}_{\mathrm{G}}=$ partial load factor $=1.0$
. $\mathrm{Y}_{\mathrm{P}}=$ partial load factor $\quad=\quad 1.0$
. Yw = wind partial load factor $=1.0$
. $\mathrm{G}=$ self weight
. $\mathrm{P}=$ dead load
. W = wind shear force
. $\mathrm{M}_{\mathrm{G}}=$ self weight bending moment (2° order)
. $\mathrm{M}_{\mathrm{P}}=$ dead load bending moment ($1^{\circ} \mathrm{e} 2^{\circ}$ order)
. $\mathrm{M}_{\mathrm{w}}=$ wind bending moment

N.C.M. srI

DESIGN STRENGTH

Design resistance, comparable with design forces indicated in the foregoing explanation, are defined by the following relations with a saf ety factor equal to 1.05 and with a characteristic y eld strength of the steel equal to $3550 \mathrm{daN} / \mathrm{cmq}$.
To take into account local instability cases ty pical of cold formed section, steel y eld strength is reduced by a factor depending on diameter/thickness ratio:

$D / t<16984 /$ fyk	\rightarrow	$\eta=1$
$16984 /$ fyk $\leq D / t \leq 89600 / f y k$	\rightarrow	$\eta=4546 /(D / t)+0.4$ fyk

- $\operatorname{Nrd}=A \cdot \eta \cdot F_{k k} / \gamma_{M}$
- $\mathrm{Vrd}=A v \cdot \eta \cdot F y k /\left(\sqrt{3} \cdot r_{M}\right)$
- Mrd $=W \cdot \eta \cdot F_{k} / Y_{M}$

where

. Nrd = design axial strength
. Vrd = design shear strength
. Mrd = design bending strength
. Fyk $=$ steel characteristic y eld strength $=\quad 3550$ daN/cmq
. $\Upsilon_{M}=$ material partial factor $=$
. $\mathrm{A}=$ cross sectional area
. Av = shear cross sectional area
. $\mathrm{W}=$ e elastic modulus of cross section
. $\eta=$ strength reductive factor

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

VERIFICATION REPORTS

The bottom of every shaft section is checked for the main loads combination. The dominating variable action is wind.
The first check schematizes wind effects by static equiv alent horizontal forces.
The second check takes into account stress and strain increase of the structure due to its vibration in wind direction by a dy namic factor.
Global buckling is taken into account by a buckling reduction factor.
Where the shear force is less than half the elastic shear resistance its effects on the moment resistance may be neglected.
In the case of the bending with compression, the verification for the Ultimate Limit State is carried out by using the following equation:

- Ned $/(\mathrm{Nrd} \cdot \chi)+\mathrm{K} \cdot \mathrm{Med} / \mathrm{Mrd} \leq 1$
where
. Ned = design axial force
. Nrd = design axial strength
. Med = design bending moment
. Mrd = design bending strength
. $\chi=$ buckling reduction factor
$\chi=1 /\left(\Phi+\sqrt{ }\left(\Phi^{2}-\lambda s^{2}\right)\right)$
$\lambda s=\lambda / 76.39$
$\lambda=$ Lo /i slenderness
$\lambda 1=93,9 \varepsilon \quad$ adimensional slenderness
$\varepsilon=\sqrt{ } 235 / \mathrm{fyk}$
$\Phi=0.5\left[1+\alpha(\lambda s-0.2)+\lambda s^{2}\right]$
$\alpha=0.49 \quad$ failure factor
. $\mathrm{K}=$ interaction factor
$\mathrm{K}=\alpha[1+0.6 \lambda \mathrm{~s}$ Ned $\gamma \mathrm{M} /(\chi$ A Fyk $)]$
- Ved $\leq 0.5 \cdot$ Vrd
where
. Ved = design shear force
. Vrd $=$ design shear strength

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

DEFORMABILITY CHECK

The maximum horizontal def lection under the action of the characteristic loads is calculated to control that all relev ant serv iceability criteria are satisfied.
For deflection calculations this is a serviceability limit state and partial load factor is taken as 1.0.
The maximum horizontal deflection shall not exceed $(0.04 \cdot \mathrm{H})$ where H is the nominal height of the mast, in according to European Standards EN40.

Deflection should be taken as:
$\Sigma \mathrm{Sf}(\mathrm{N})=\mathrm{Tf}(\mathrm{N}) \cdot(\mathrm{Hs} / 2)^{3} /(3 \cdot \mathrm{E} \cdot \mathrm{J}(\mathrm{N}))+\mathrm{Mf}(\mathrm{N}) \cdot(\mathrm{Hs} / 2)^{2} /(2 \cdot \mathrm{E} \cdot \mathrm{J}(\mathrm{N}))$
where

- $\mathrm{N}=$ mast sections number
- Hs = height of nth section
- Tf $(N)=$ shear force of nth section
- Mf $(N)=$ bending moment of nth section
$-J(N)=$ moment of inertia of nth section

The value of Sf at the top gives the maximum def lection value.

PERIOD OF VIBRATION

The natural period of vibration T in seconds, is obtained by the Ray leigh method:
$\mathrm{T}=2 \pi \cdot(\Sigma \mathrm{Pi} \cdot \mathrm{yi}) /(\mathrm{g} \cdot(\Sigma \mathrm{Pi} \cdot \mathrm{yi}))$

- $\mathrm{Pi}=$ equipment and shaft mass concentrated in their centroid and horizontally acting
- yi = def lection related to each force
$-\mathrm{g}=$ gravity acceleration $=9,81 \mathrm{~m} / \mathrm{s}^{2}$

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

WIND CALCULATIONS

The wind action on the structure is represented by a simplified set of pressure or forces whose effects are equiv alent to the extreme effects of the turbulent wind.
The wind actions are determined from the basic values of wind velocity and they are characteristic values having annual probabilities of exceedence of 0.02 , which is equivalent to a mean return of 50 years.

Fundamental value of the basic wind velocity vb, o :
$\mathrm{vb}, \mathrm{o}=$
$25.0 \mathrm{~m} / \mathrm{s}$
is the characteristic 10 minutes mean wind velocity with an annual risk of being exceeded of 0.02 , irrespective of wind direction and time of year, at 10 m above ground level.
The fundamental value of the basic wind velocity may be given in the National Annex (wind maps).

Basic velocity pressure $q b=\rho \cdot v b^{2} / 2=$
where
$\rho=1.25 \mathrm{Kg} / \mathrm{m}^{3} \quad$ is the air density

where

$$
\cdot \mathrm{c}_{\mathrm{e}}(\mathrm{z})=\mathrm{c}_{\mathrm{r}}(\mathrm{z})^{2}+7 \cdot \mathrm{Kr} \cdot \mathrm{c}_{\mathrm{r}}(\mathrm{z}) \quad \text { is the exposure factor }=\quad 2.81
$$

. Terrain category (ref. Table 4.1) =
II
$\rightarrow \quad$ Area with low vegetation such as grass and isolated obstacles
(trees, buildings...) with separation of at least 20 obstacle heights

Wind velocity at z height:
$V(z)=V\left(20 \cdot q_{p}(z) / \rho\right)=41.9 \mathrm{~m} / \mathrm{s} \quad \rightarrow \quad 151 \mathrm{Km} / \mathrm{h}$

INPUT DATA:

. MAST HEIGHT ABOVE GROUND
. HIGH MAST EMBEDDED LENGTH
. TILT OF THE SHAFT
. BASIC WIND VELOCITY (10 min mean velocity at 10 meters)
. WIND MAXIMUM VELOCITY

. PEAK VELOCITY PRESSURE

. NUMBER OF LANTERNS
180° arranged

. LANTERN MASS

. EXPOSED GLOBAL AREA OF LANTERNS
. CONTROL BOX MASS
. EXPOSED AREA OF A CONTROL BOX
. ACCESSORIES MASS AND LIVE LOAD ON PLATFORM
. EXPOSED GLOBAL AREA OF ACCESSORIES
(control box included)
. SCREEN BARYCENTER POSITION (abov e ground lev el)
. ACCESSORIES BARYCENTER POSI (above ground lev el)
. ECCENTRIC AXIAL LOAD 1
. X1 position
. Y1 position
. ECCENTRIC AXIAL LOAD 2
. X2 position
. Y2 position

$\mathrm{H}=$	20	m	
H^{\prime}	$=$	0	m
$\%$	$=$	0.023	
vref	$=$	25	$\mathrm{~m} / \mathrm{s}$
$\mathrm{V}=$	151	Km / h	
Qb	$=$	110	$\mathrm{daN} / \mathrm{mq}$
n	$=$	13	

$\mathrm{n}=13$
$\mathrm{p}=22 \mathrm{daN}$
$S=3.3 \mathrm{mq}$
$\mathrm{p}^{\prime}=0 \quad \mathrm{daN}$
$\mathrm{S} 1=0 \mathrm{mq}$
$p^{\prime \prime}=1710 \mathrm{daN}$
$\mathrm{S} 2=2.55 \mathrm{mq}$

$\mathrm{Hs}=$	20	m
$\mathrm{Hs} \mathrm{s}^{\prime}$	$=$	20

$\mathrm{P} 1 \mathrm{e}=$		0	
$\mathrm{x} 1=$		0	
$\mathrm{y} 1=$		m	
y 2 e	$=$		m
$\mathrm{P} 2=$		0	daN
$\mathrm{y} 2=$		0	m
			m

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Italy

THE HIGH MAST IS DIVIDED INTO N² SECTIONS

$.1^{\circ}$ SECTION LENGTH	$\mathrm{L} 1=10400 \mathrm{~mm}$	
$.2^{\circ}$ SECTION LENGTH	$\mathrm{L} 2=10400 \mathrm{~mm}$	
$.1^{\circ}$ OVERLAP LENGTH	$\mathrm{L} 1 \mathrm{~s}=800 \mathrm{~mm}$	

. GLOBAL SLENDERNESS 99
. PERIOD OF VIBRATION T 2.08
sec. MAXIMUM HORIZONTAL DEFLECTION532
38
. H/f RATIO1129mm. SHAFT MASSdaN

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

FIRST SECTION:

. top diameter	220	mm
. bottom diameter	459	mm
. thickness	5	mm
SECOND SECTION:	431	mm
. top diameter	670	mm
. bottom diameter	5	mm

BASE PLATE: steel S355 JR

. external diameter	860	mm
. internal diameter	620	mm
. thickness	25	mm
. pitch circle of anchor bolts	760	mm

STRAGHT ANCHOR BOLT: [embedded length $=900 \mathrm{~mm}$]
N. 16 M27 Lg. 1100 mm

TEMPLATE :
width 120 mm thickness 12 mm S275 JR

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Italy

The shaft is divided into 15 sections.
The following table shows the masse of every section and the force generated by the wind in every section.

\mathbf{Z}	$\mathbf{C e}(\mathbf{z})$	$\mathbf{Q w}$	\mathbf{A}	\mathbf{D}	$\mathbf{C p}$	\mathbf{F}	\mathbf{P}
(m)		$(\mathrm{daN} / \mathrm{mq})$	(mq)	(m)		(daN)	(daN)
20.0	2.810	109.8	3.25	-	1	356.7	286
20.0	2.810	109.8	2.55	-	1.2	335.9	1710.00
20.00	2.810	109.8	0.000	0.220	1.20	0.0	0.00
19.33	2.787	108.9	0.363	0.235	1.20	47.5	51.81
18.00	2.738	107.0	0.403	0.265	1.20	51.8	56.75
16.67	2.686	104.9	0.443	0.295	1.20	55.8	61.68
15.33	2.630	102.8	0.483	0.325	1.20	59.6	66.61
14.00	2.570	100.4	0.523	0.355	1.20	63.0	71.54
12.67	2.504	97.8	0.563	0.385	1.15	63.4	76.48
11.33	2.432	95.0	0.603	0.415	1.10	63.1	81.41
10.00	2.352	91.9	0.643	0.445	1.05	62.2	86.34
8.67	2.262	88.4	0.683	0.475	1.00	60.5	91.27
7.33	2.159	84.3	0.723	0.505	0.95	58.1	96.21
6.00	2.037	79.6	0.763	0.535	0.90	54.9	101.14
4.67	1.889	73.8	0.803	0.565	0.85	50.6	106.07
3.33	1.698	66.3	0.843	0.595	0.80	45.0	111.00
2.00	1.423	55.6	0.883	0.625	0.76	37.1	115.93
0.67	1.423	55.6	0.923	0.655	0.71	36.3	120.87

$. \quad Z=\quad$ height of center of gravity of the nth section
. $\mathrm{Ce}(z)=\quad$ exposure coefficient of center of gravity of the nth section
. $\mathrm{Qw}=\quad$ wind pressure of the nth section
. $=\quad$ area exposed to wind of the nth section
. $\mathrm{D}=\quad$ diameter of the nth section
. $\mathrm{Cp}=\quad$ force coefficient of center of gravity of the nth section
. $\mathrm{F}=\quad$ wind force on the nth section
. $P=\quad$ masse of the nth section
N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

DESIGN INTERNAL FORCES OF SECTIONS: STATIC CASE

| \mathbf{Z} | \mathbf{D} | \mathbf{N} | \mathbf{V} | $\mathbf{M 1}$ | $\mathbf{M e}$ | $\mathbf{M 2}$ | $\mathbf{M d}$ | $\mathbf{V d}$ | $\mathbf{N d}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (m) | (m) | (KN) | (KN) | (KNm) | (KNm) | (KNm) | (KNm) | (KN) | (KN) |
| | | | | | | | | | |
| 20.00 | 0.220 | 26.946 | 10.389 | 0.0 | 0.0 | 1.355 | $\mathbf{1 . 3 6}$ | $\mathbf{1 0 . 3 9}$ | $\mathbf{2 6 . 9 5}$ |
| 18.67 | 0.250 | 27.645 | 11.101 | 7.4 | 0.0 | 3.658 | $\mathbf{1 1 . 0 6}$ | $\mathbf{1 1 . 1 0}$ | $\mathbf{2 7 . 6 5}$ |
| 17.33 | 0.280 | 28.412 | 11.878 | 29.6 | 0.0 | 5.405 | $\mathbf{3 5 . 0 5}$ | $\mathbf{1 1 . 8 8}$ | $\mathbf{2 8 . 4 1}$ |
| 16.00 | 0.310 | 29.244 | 12.715 | 46.0 | 0.0 | 7.052 | 53.09 | $\mathbf{1 2 . 7 1}$ | $\mathbf{2 9 . 2 4}$ |
| 14.67 | 0.340 | 30.143 | 13.609 | 63.6 | 0.0 | 8.584 | $\mathbf{7 2 . 1 7}$ | $\mathbf{1 3 . 6 1}$ | $\mathbf{3 0 . 1 4}$ |
| 13.33 | 0.370 | 31.109 | 14.554 | 82.4 | 0.0 | 9.991 | $\mathbf{9 2 . 3 6}$ | $\mathbf{1 4 . 5 5}$ | $\mathbf{3 1 . 1 1}$ |
| 12.00 | 0.400 | 32.142 | 15.505 | 102.4 | 0.0 | 11.270 | $\mathbf{1 1 3 . 6 8}$ | $\mathbf{1 5 . 5 0}$ | $\mathbf{3 2 . 1 4}$ |
| 10.67 | 0.430 | 33.241 | 16.452 | 123.7 | 0.0 | 12.418 | $\mathbf{1 3 6 . 1 3}$ | $\mathbf{1 6 . 4 5}$ | $\mathbf{3 3 . 2 4}$ |
| 9.33 | 0.460 | 34.406 | 17.384 | 146.3 | 0.0 | 13.433 | $\mathbf{1 5 9 . 7 0}$ | $\mathbf{1 7 . 3 8}$ | $\mathbf{3 4 . 4 1}$ |
| 8.00 | 0.490 | 35.639 | 18.292 | 170.0 | 0.0 | 14.308 | $\mathbf{1 8 4 . 3 6}$ | $\mathbf{1 8 . 2 9}$ | $\mathbf{3 5 . 6 4}$ |
| 6.67 | 0.520 | 36.937 | 19.164 | 195.0 | 0.0 | 15.043 | $\mathbf{2 1 0 . 0 6}$ | $\mathbf{1 9 . 1 6}$ | $\mathbf{3 6 . 9 4}$ |
| 5.33 | 0.550 | 38.303 | 19.987 | 221.1 | 0.0 | 15.560 | $\mathbf{2 3 6 . 6 8}$ | $\mathbf{1 9 . 9 9}$ | $\mathbf{3 8 . 3 0}$ |
| 4.00 | 0.580 | 39.735 | 20.747 | 248.3 | 0.0 | 16.010 | $\mathbf{2 6 4 . 2 9}$ | $\mathbf{2 0 . 7 5}$ | $\mathbf{3 9 . 7 3}$ |
| 2.67 | 0.610 | 41.233 | 21.422 | 276.4 | 0.0 | 16.313 | $\mathbf{2 9 2 . 7 0}$ | $\mathbf{2 1 . 4 2}$ | $\mathbf{4 1 . 2 3}$ |
| 1.33 | 0.640 | 42.798 | 21.979 | 305.3 | 0.0 | 16.467 | $\mathbf{3 2 1 . 7 9}$ | $\mathbf{2 1 . 9 8}$ | $\mathbf{4 2 . 8 0}$ |
| 0.00 | 0.670 | 44.430 | 22.523 | 335.0 | 0.0 | 16.486 | $\mathbf{3 5 1 . 4 8}$ | $\mathbf{2 2 . 5 2}$ | $\mathbf{4 4 . 4 3}$ |

$. Z=\quad$ height of bottom diameter of the nth section
. $\mathrm{D}=\quad$ bottom diameter of the nth section
. $\mathrm{N}=\quad$ design axial force of the nth section
. $\mathrm{V}=\quad$ design shear force of the nth section
. M1 = design bending moment of the 1° order of the nth section
. M2 = design bending moment of the 2° order of the nth section
$. \mathrm{Me}=\quad$ design bending moment due to eccentric load of the nth section
. Md = global design bending moment of the nth section
$. \mathrm{Vd}=\quad$ global design shear force of the nth section
. $\mathrm{Nd}=\quad$ global design axial force of the nth section
N.C.M. srI

Via Bramante, 24-20020 MAGNA GO (Mi) - Italy

DESIGN INTERNAL FORCES OF SECTIONS: DYNAMIC CASE

| \mathbf{Z} | \mathbf{D} | \mathbf{N} | \mathbf{V} | $\mathbf{M 1}$ | $\mathbf{M e}$ | $\mathbf{M 2}$ | $\mathbf{M d}$ | $\mathbf{V d}$ | $\mathbf{N d}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (m) | (m) | (KN) | (KN) | (KNm) | (KNm) | (KNm) | (KNm) | (KN) | (KN) |
| | | | | | | | | | |
| 20.00 | 0.220 | 26.946 | 11.947 | 0.0 | 0.0 | 1.355 | $\mathbf{1 . 3 6}$ | $\mathbf{1 1 . 9 5}$ | $\mathbf{2 6 . 9 5}$ |
| 18.67 | 0.250 | 27.645 | 12.765 | 8.5 | 0.0 | 3.658 | $\mathbf{1 2 . 1 7}$ | $\mathbf{1 2 . 7 7}$ | $\mathbf{2 7 . 6 5}$ |
| 17.33 | 0.280 | 28.412 | 13.658 | 34.1 | 0.0 | 5.405 | $\mathbf{3 9 . 5 0}$ | $\mathbf{1 3 . 6 6}$ | $\mathbf{2 8 . 4 1}$ |
| 16.00 | 0.310 | 29.244 | 14.621 | 52.9 | 0.0 | 7.052 | $\mathbf{6 0 . 0 0}$ | $\mathbf{1 4 . 6 2}$ | $\mathbf{2 9 . 2 4}$ |
| 14.67 | 0.340 | 30.143 | 15.649 | 73.1 | 0.0 | 8.584 | $\mathbf{8 1 . 7 1}$ | $\mathbf{1 5 . 6 5}$ | $\mathbf{3 0 . 1 4}$ |
| 13.33 | 0.370 | 31.109 | 16.736 | 94.7 | 0.0 | 9.991 | $\mathbf{1 0 4 . 7 1}$ | $\mathbf{1 6 . 7 4}$ | $\mathbf{3 1 . 1 1}$ |
| 12.00 | 0.400 | 32.142 | 17.830 | 117.8 | 0.0 | 11.270 | $\mathbf{1 2 9 . 0 3}$ | $\mathbf{1 7 . 8 3}$ | $\mathbf{3 2 . 1 4}$ |
| 10.67 | 0.430 | 33.241 | 18.918 | 142.3 | 0.0 | 12.418 | $\mathbf{1 5 4 . 6 7}$ | $\mathbf{1 8 . 9 2}$ | $\mathbf{3 3 . 2 4}$ |
| 9.33 | 0.460 | 34.406 | 19.990 | 168.2 | 0.0 | 13.433 | $\mathbf{1 8 1 . 6 3}$ | $\mathbf{1 9 . 9 9}$ | $\mathbf{3 4 . 4 1}$ |
| 8.00 | 0.490 | 35.639 | 21.034 | 195.5 | 0.0 | 14.308 | $\mathbf{2 0 9 . 8 5}$ | $\mathbf{2 1 . 0 3}$ | $\mathbf{3 5 . 6 4}$ |
| 6.67 | 0.520 | 36.937 | 22.037 | 224.3 | 0.0 | 15.043 | $\mathbf{2 3 9 . 3 0}$ | $\mathbf{2 2 . 0 4}$ | $\mathbf{3 6 . 9 4}$ |
| 5.33 | 0.550 | 38.303 | 22.983 | 254.3 | 0.0 | 15.560 | $\mathbf{2 6 9 . 8 3}$ | $\mathbf{2 2 . 9 8}$ | $\mathbf{3 8 . 3 0}$ |
| 4.00 | 0.580 | 39.735 | 23.857 | 285.5 | 0.0 | 16.010 | $\mathbf{3 0 1 . 5 1}$ | $\mathbf{2 3 . 8 6}$ | $\mathbf{3 9 . 7 3}$ |
| 2.67 | 0.610 | 41.233 | 24.634 | 317.8 | 0.0 | 16.313 | $\mathbf{3 3 4 . 1 4}$ | $\mathbf{2 4 . 6 3}$ | $\mathbf{4 1 . 2 3}$ |
| 1.33 | 0.640 | 42.798 | 25.274 | 351.1 | 0.0 | 16.467 | $\mathbf{3 6 7 . 5 6}$ | $\mathbf{2 5 . 2 7}$ | $\mathbf{4 2 . 8 0}$ |
| 0.00 | 0.670 | 44.430 | 25.899 | 385.2 | 0.0 | 16.486 | $\mathbf{4 0 1 . 7 0}$ | $\mathbf{2 5 . 9 0}$ | $\mathbf{4 4 . 4 3}$ |

$. Z=\quad$ height of bottom diameter of the nth section
. $\mathrm{D}=\quad$ bottom diameter of the nth section
. $\mathrm{N}=$ design axial force of the nth section
. $\mathrm{V}=\quad$ design shear force of the nth section
. M1 = design bending moment of the 1° order of the nth section
. M2 = design bending moment of the 2° order of the nth section
$. \mathrm{Me}=\quad$ design bending moment due to eccentric load of the nth section
$. \mathrm{Md}=\quad$ global design bending moment of the nth section
$. \mathrm{Vd}=\quad$ global design shear force of the nth section
. $\mathrm{Nd}=\quad$ global design axial force of the nth section
N.C.M. srI

design strengit of sections

\mathbf{Z}	\mathbf{D}	\mathbf{s}	\mathbf{D} / \mathbf{s}	Fydr	\mathbf{A}	\mathbf{W}	Nrd	Vrd	Mrd
(m)	(mm)	(mm)		$(\mathrm{daN} / \mathrm{cmq})$	(cmq)	$\left(\mathrm{cm}^{3}\right)$	(KN)	(KN)	(KNm)
20.00	220	5	44.0	3550	33.6	179	$\mathbf{1 1 9 2}$	$\mathbf{4 3 8}$	$\mathbf{6 4}$
18.67	250	5	50.0	3489	38.3	232	$\mathbf{1 3 3 5}$	$\mathbf{4 9 1}$	$\mathbf{8 1}$
17.33	280	5	56.0	3343	43.0	293	$\mathbf{1 4 3 6}$	$\mathbf{5 2 8}$	$\mathbf{9 8}$
16.00	310	5	62.0	3225	47.6	360	$\mathbf{1 5 3 6}$	$\mathbf{5 6 5}$	$\mathbf{1 1 6}$
14.67	340	5	68.0	3128	52.3	435	$\mathbf{1 6 3 7}$	$\mathbf{6 0 2}$	$\mathbf{1 3 6}$
13.33	370	5	74.0	3047	57.0	516	$\mathbf{1 7 3 7}$	$\mathbf{6 3 9}$	$\mathbf{1 5 7}$
12.00	400	5	80.0	2978	61.7	604	$\mathbf{1 8 3 7}$	$\mathbf{6 7 5}$	$\mathbf{1 8 0}$
10.67	430	5	86.0	2919	66.4	699	$\mathbf{1 9 3 8}$	$\mathbf{7 1 2}$	$\mathbf{2 0 4}$
9.33	460	5	92.0	2867	71.1	802	$\mathbf{2 0 3 8}$	$\mathbf{7 4 9}$	$\mathbf{2 3 0}$
8.00	490	5	98.0	2822	75.8	911	$\mathbf{2 1 3 8}$	$\mathbf{7 8 6}$	$\mathbf{2 5 7}$
6.67	520	5	104.0	2782	80.4	1027	$\mathbf{2 2 3 8}$	$\mathbf{8 2 2}$	$\mathbf{2 8 6}$
5.33	550	5	110.0	2746	85.1	1150	$\mathbf{2 3 3 8}$	$\mathbf{8 5 9}$	$\mathbf{3 1 6}$
4.00	580	5	116.0	2714	89.8	1280	$\mathbf{2 4 3 7}$	$\mathbf{8 9 6}$	$\mathbf{3 4 7}$
2.67	610	5	122.0	2685	94.5	1417	$\mathbf{2 5 3 7}$	$\mathbf{9 3 3}$	$\mathbf{3 8 1}$
1.33	640	5	128.0	2659	99.2	1561	$\mathbf{2 6 3 7}$	$\mathbf{9 6 9}$	$\mathbf{4 1 5}$
0.00	670	5	134.0	2635	103.9	1712	$\mathbf{2 7 3 7}$	$\mathbf{1 0 0 6}$	$\mathbf{4 5 1}$

$. Z=\quad$ height of bottom diameter of te nth section
. $\mathrm{D}=\quad$ bottom diameter of the nth section
. $\mathrm{S}=$ thickness of the nth section
. Fydr $=\quad$ reduced y eld strenght $=\mu \cdot$ Fyd $/$ YMO
. $\mu=\quad$ reduced y eld strenght factor depending on D / s ratio
. $\mathrm{YMO}=\quad$ partial factor for resistance of nth section
. $A=\quad$ area of the nth section
. $\mathrm{W}=\quad$ elastic modulus of the nth section
. Nrd = design axial strenght of the nth section
. Vrd $=\quad$ design shear strenght of the nth section
. Mrd $=$ design bending strenght of the nth section

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

CHECK: STATIC CASE

The following table summarises the outcome of the check for the nth section through the exploitation ratio η. The structure is checked if $\eta \leq 1$ for the nth section.

| \mathbf{Z} | $\boldsymbol{\lambda}$ | $\boldsymbol{\lambda} \mathbf{s}$ | $\boldsymbol{\Phi}$ | \mathbf{X} | \mathbf{k} | $\mathbf{N d} / \mathbf{\chi N r d}$ | $\mathbf{k M d} / \mathbf{M r d}$ | $\boldsymbol{\eta}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (m) | | | | | | | | | |
| | | | | | | | | | |
| 20.00 | 0 | 0.000 | 0.451 | 1.109 | 0.900 | 0.020 | 0.019 | $\mathbf{0 . 0 4 0}$ | OK |
| 18.67 | 18 | 0.235 | 0.536 | 0.982 | 0.903 | 0.021 | 0.123 | $\mathbf{0 . 1 4 4}$ | OK |
| 17.33 | 32 | 0.419 | 0.641 | 0.887 | 0.905 | 0.022 | 0.324 | $\mathbf{0 . 3 4 6}$ | OK |
| 16.00 | 43 | 0.566 | 0.750 | 0.805 | 0.907 | 0.024 | 0.415 | $\mathbf{0 . 4 3 8}$ | OK |
| 14.67 | 53 | 0.687 | 0.856 | 0.733 | 0.909 | 0.025 | 0.483 | $\mathbf{0 . 5 0 8}$ | OK |
| 13.33 | 60 | 0.789 | 0.955 | 0.669 | 0.911 | 0.027 | 0.536 | $\mathbf{0 . 5 6 2}$ | OK |
| 12.00 | 67 | 0.874 | 1.048 | 0.616 | 0.913 | 0.028 | 0.577 | $\mathbf{0 . 6 0 6}$ | OK |
| 10.67 | 72 | 0.948 | 1.133 | 0.571 | 0.915 | 0.030 | 0.610 | $\mathbf{0 . 6 4 1}$ | OK |
| 9.33 | 77 | 1.012 | 1.211 | 0.533 | 0.917 | 0.032 | 0.637 | $\mathbf{0 . 6 6 9}$ | OK |
| 8.00 | 82 | 1.068 | 1.283 | 0.501 | 0.918 | 0.033 | 0.658 | $\mathbf{0 . 6 9 2}$ | OK |
| 6.67 | 85 | 1.118 | 1.350 | 0.475 | 0.919 | 0.035 | 0.676 | $\mathbf{0 . 7 1 0}$ | OK |
| 5.33 | 89 | 1.162 | 1.411 | 0.452 | 0.920 | 0.036 | 0.689 | $\mathbf{0 . 7 2 5}$ | OK |
| 4.00 | 92 | 1.201 | 1.467 | 0.433 | 0.920 | 0.038 | 0.700 | $\mathbf{0 . 7 3 8}$ | OK |
| 2.67 | 94 | 1.237 | 1.519 | 0.417 | 0.921 | 0.039 | 0.708 | $\mathbf{0 . 7 4 7}$ | OK |
| 1.33 | 97 | 1.269 | 1.567 | 0.402 | 0.922 | 0.040 | 0.715 | $\mathbf{0 . 7 5 5}$ | OK |
| 0.00 | 99 | 1.298 | 1.612 | 0.389 | 0.923 | 0.042 | 0.719 | $\mathbf{0 . 7 6 0}$ | OK |

$. Z=\quad$ height of bottom diameter of the nth section
. $\lambda=\quad$ slenderness
. $\lambda s=\quad$ non dimensional slenderness
$\Phi=\quad 0.5\left[1+\alpha(\lambda s-0.2)+\lambda s^{2}\right]=v$ alue to determine the reduction factor
. $\alpha=\quad 0.49=$ imperfection factor

- $\chi=\quad 1 /\left[\Phi+\sqrt{ } \Phi^{2}+\lambda s^{2}\right]=$ reduction factor for the relev ant buckling curve
$. k=\quad \alpha[1+0.6 \lambda s \cdot \mathrm{Ned} /(\mathrm{Nrd} \cdot \mathrm{X})]=$ interaction factor
. $\eta=\quad$ exploitation ratio

N.C.M. srl

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

CHECK: DYNAMIC CASE

The following table summarises the outcome of the check for the nth section through the exploitation ratio η. The structure is checked if $\eta \leq 1$ for the nth section.

| \mathbf{Z} | $\boldsymbol{\lambda}$ | $\boldsymbol{\lambda} \mathbf{s}$ | $\mathbf{\Phi}$ | \mathbf{X} | \mathbf{k} | $\mathbf{N d} / \mathbf{\chi N r d}$ | $\mathbf{k M d} / \mathbf{M r d}$ | $\boldsymbol{\eta}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (m) | | | | | | | | | |
| | | | | | | | | | |
| 20.00 | 0 | 0.000 | 0.451 | 1.109 | 0.900 | 0.020 | 0.019 | $\mathbf{0 . 0 4 0}$ | OK |
| 18.67 | 18 | 0.235 | 0.536 | 0.982 | 0.903 | 0.021 | 0.135 | $\mathbf{0 . 1 5 7}$ | OK |
| 17.33 | 32 | 0.419 | 0.641 | 0.887 | 0.905 | 0.022 | 0.365 | $\mathbf{0 . 3 8 7}$ | OK |
| 16.00 | 43 | 0.566 | 0.750 | 0.805 | 0.907 | 0.024 | 0.469 | $\mathbf{0 . 4 9 2}$ | OK |
| 14.67 | 53 | 0.687 | 0.856 | 0.733 | 0.909 | 0.025 | 0.547 | $\mathbf{0 . 5 7 2}$ | OK |
| 13.33 | 60 | 0.789 | 0.955 | 0.669 | 0.911 | 0.027 | 0.607 | $\mathbf{0 . 6 3 4}$ | OK |
| 12.00 | 67 | 0.874 | 1.048 | 0.616 | 0.913 | 0.028 | 0.655 | $\mathbf{0 . 6 8 3}$ | OK |
| 10.67 | 72 | 0.948 | 1.133 | 0.571 | 0.915 | 0.030 | 0.694 | $\mathbf{0 . 7 2 4}$ | OK |
| 9.33 | 77 | 1.012 | 1.211 | 0.533 | 0.917 | 0.032 | 0.725 | $\mathbf{0 . 7 5 6}$ | OK |
| 8.00 | 82 | 1.068 | 1.283 | 0.501 | 0.918 | 0.033 | 0.750 | $\mathbf{0 . 7 8 3}$ | OK |
| 6.67 | 85 | 1.118 | 1.350 | 0.475 | 0.919 | 0.035 | 0.770 | $\mathbf{0 . 8 0 4}$ | OK |
| 5.33 | 89 | 1.162 | 1.411 | 0.452 | 0.920 | 0.036 | 0.786 | $\mathbf{0 . 8 2 2}$ | OK |
| 4.00 | 92 | 1.201 | 1.467 | 0.433 | 0.920 | 0.038 | 0.799 | $\mathbf{0 . 8 3 6}$ | OK |
| 2.67 | 94 | 1.237 | 1.519 | 0.417 | 0.921 | 0.039 | 0.809 | $\mathbf{0 . 8 4 8}$ | OK |
| 1.33 | 97 | 1.269 | 1.567 | 0.402 | 0.922 | 0.040 | 0.816 | $\mathbf{0 . 8 5 7}$ | OK |
| 0.00 | 99 | 1.298 | 1.612 | 0.389 | 0.923 | 0.042 | 0.821 | $\mathbf{0 . 8 6 3}$ | OK |

$\cdot Z=$	height of bottom diameter of the nth section
$\cdot \lambda=$	slenderness
$\cdot \lambda s=$	non dimensional slenderness
$\cdot \Phi=$	$0.5\left[1+\alpha(\lambda s-0.2)+\lambda s^{2}\right]=$ value to determine the reduction factor
$\cdot \alpha=$	$0.49=$ imperfection factor
$\cdot \chi=$	$1 /\left[\Phi+\sqrt{ } \Phi^{2}+\lambda s^{2}\right]=$ reduction factor for the relevant buckling curve
$\cdot k=$	$\alpha[1+0.6 \lambda s \cdot N e d /(N r d \cdot X)]=$ interaction factor
$\cdot \eta=$	exploitation ratio

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

INTERNAL FORCES AT THE BOTTOM OF THE MAST

Calculated internal forces at the bottom of the mast are indicated above (ULS and SLS).
Static internal forces are calculated according to the relev ant combination of actions (see pag. 9) Dy namic internal forces take into account a magnification factor (see pag. 7).

STATIC INTERNAL FORCES (ULS):

. BENDING MOMENT	$\mathrm{Md}=$	$\mathbf{3 5 1 . 4 8}$	KNm
. SHEAR FORCE	$\mathrm{Vd}=$	$\mathbf{2 2 . 5 2}$	KN
. AXIAL FORCE	$\mathrm{Nd}=$	$\mathbf{4 4 . 4 3}$	KN

DYNAMIC INTERNAL FORCES (ULS):
. BENDING MOMENT
. SHEAR FORCE
. AXIAL FORCE

$M d^{\prime}$	$=401.70$	KNm
Vd^{\prime}	$=25.90$	KN
Nd^{\prime}	$=44.43$	KN

$M d^{\prime}=401.70 \mathrm{KNm}$
$N d^{\prime}=44.43 \mathrm{KN}$

Calculated internal forces for serviceability limit state are indicated above:

$. \mathrm{Nrd}=$	$\mathrm{G}+\mathrm{P}$	axial force
$\cdot \mathrm{Vrd}=$	W	shear force
$\cdot \mathrm{Mrd}=$	$\mathrm{Mg}+\mathrm{Mp}+\mathrm{Mw}$	bending moment

where serviceability partial safety factor have a value equal to unity (SLS).

. BENDING MOMENT	$\mathrm{Ms}=$	$\mathbf{2 3 5 . 5 4}$	KNm	static
. SHEAR FORCE	$\mathrm{Ts}=$	$\mathbf{1 5 . 0 2}$	KN	
. AXIAL FORCE	$\mathrm{Ns}=$	$\mathbf{3 2 . 9 1}$	KN	
. BENDING MOMENT	$\mathrm{Ms}^{\prime}=$	$\mathbf{2 6 9 . 0 2}$	KNm	dy namic
. SHEAR FORCE	$\mathrm{Ts}^{\prime}=$	$\mathbf{1 7 . 2 7}$	KN	
. AXIAL FORCE	$\mathrm{Ns}^{\prime}=$	$\mathbf{3 2 . 9 1}$	KN	

VERIFICATION OF FRICTION JOINTS

(re 'Calculation of minimum ov erlap' / ENEL Unità specialistica sistemi e componenti)

The contact surf ace between the upper and lower section consists of 16 trapezoids, as many as sides of the section itself, each of which has area At and forms an angle at with the axis of the pole.
The insertion force F to join the sections generates a pressure p in the ov erlap area, whose component Ft applied to single trapezoid is equal to $\mathrm{Ft}=\mathrm{p}$. At directed perpendicularly to it.
This force generates a friction force Rt acting on the level of the trapezoid itself equal to :
$\mathrm{Rt}=\mu \cdot \mathrm{Ft}=\mu \cdot \mathrm{p} \cdot \mathrm{At}$
with $\mu=0,3=$ friction coefficient between contact surf aces of two sections (hot dip galv anized steel) The components Rta which are parallel to the pole axis and applied to trapezoids bary centre, generate a resisting moment due to friction equal to

Mra $=2 \cdot \operatorname{Rta} \cdot(\mathrm{a} 1+\mathrm{a} 2+\mathrm{a} 3+\mathrm{a} 4)=\mu \cdot \mathrm{p} \cdot \mathrm{Dm}^{2} \cdot \mathrm{i}_{\text {min }} \cdot \mathrm{K} 1 \cdot \mathrm{~K} 2$
with

- $2 \cdot \operatorname{tg}(\alpha)=$ pole conicity
$-\operatorname{tg}(\alpha \mathrm{t})=\operatorname{tg}(\alpha) \cdot \cos (180 / 16)$
$-A t=(D g+\operatorname{tg}(\alpha) \cdot L m i n) \cdot \operatorname{Lmin} \cdot \sin (180 / 16) / \cos (\alpha t)$
$-R t a=R t \cdot \cos (\alpha t)=\mu \cdot p \cdot A t \cdot \cos (\alpha t)=\mu \cdot p \cdot D m \cdot \sin (180 / 16) \cdot L m i n$
- a1, a2, a3, a4 = distances between centres of application of Rta forces
- $p=$ pressure generated by the lower section to the upper section in the ov erlap length
- Dm = diameter of circle circumscribed to the medium section of overlap length
- Lmin = minimum ov erlap length between two sections
- K1 $\mathrm{K} 2=0,9808=$ coefficients dependent on geometry

Referring to the bending moment Mf which acts in the medium area of overlap due to the combination of considered stresses, in order to verify the conditions of stability for friction relevant to the sections joint, theref ore following formula will have to be verified: Mra > Mf.
As the stresses produced by Mf in the section are lower than the relev ant allowed value, it follows that:

$$
\mathrm{W} \cdot \sigma \cdot \mathrm{am}>\mathrm{Mf}
$$

in which, replacing the prev iously calculated value of Mra and taking into consideration that for a 16 sided poligonal section $\mathrm{W}=0,76 \cdot \mathrm{Dm} \cdot \mathrm{Di} \cdot \mathrm{s}$, (with $\mathrm{Di}=$ internal circumscribed diameter) theref ore we obtain that formula which guarantees joint stability is verified:

Lmin / Dm > 1,5 condition for joint stability

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

BASE PLATE CHECK

BASE PLATE CHARACTERISTICS

. external diameter:

860
620 mm
25 mm
760 mm
149.2 mm

16
S355 JR
16
10 mm
S235 JR

DESIGN INTERNAL FORCES IN THE BASE PLATE
$\mathrm{Mpd}=\mathrm{Nrd} \cdot \mathrm{d}=$

where

. Nrd = design tensile strength
= A Fyk / Ym :

19373
daN
$\mathrm{A}=$ bolt cross section :
4.59
. $\mathrm{rm}=$ partial safety factor :
. $\mathrm{d}=$ mean distance between rib and bolt :
5.06
cm

DESIGN STRENGTH OF THE BASE PLATE
$\mathrm{Mrd}=\mathrm{W} \cdot \mathrm{fyk} / \mathrm{rm}=$
11.32

KNm
where
. $W=$ base plate elastic modulus :
33.5
cm^{3}
. $f y k=$ characteristic y eld strength :
3550
. $\mathrm{rm}=$ partial saf ety factor :
1.25

BASE PLATE CHECK

[^0]0.752
≤ 1
OK

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Italy

SHAFT-BASE PLATE FILLET WELD CHECK

Geometrical characteristic of fillet weld:
. internal diameter of fillet weld
. minimum fillet weld leg size
. fillet weld throat thickness
. fillet weld area
. fillet weld elastic modulus
. fillet weld tensile strength

Design stresses in fillet weld:

Static case:
. ns = Nds / As + Mds / Ws =
. $\mathrm{ts}=2 \mathrm{Vds} / \mathrm{As}=$

Dy namic case:
. nd = Ndd / As + Mdd / Ws =
. td = $2 \mathrm{Vdd} / \mathrm{As}=$

Verification reports:

Static case:
. $v\left(n s^{2}+t^{2}\right)=$
. $\mathrm{ns}+\mathrm{ts}=$

Dy namic case:
. $v\left(n d^{2}+t d^{2}\right)=$
. $n d+t d=$
where

. $\mathrm{fyk}=$	3550	$\mathrm{daN} / \mathrm{cmq}$
. $\beta 1=$	0.7	
. $\beta 2=$	0.85	characteristic y eld strength of base plate
factor		

The verification is checked

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

CHARACTERISTICS OF ANCHOR BOLTS

N. 16 M27 Lg. 1100 mm

HEADED ANCHOR BOLTS

. number of anchor bolts :
. diameter of anchor bolts :
. embedded length of anchor bolt :
. total length of anchor bolt :
. steel grade of anchor bolt :
. diameter of ring template :
. thickness of ring template:
. width of ring template:
. steel grade of ring template :16

27 mm
900 mm
1100 mm
S355 JR
760 mm
12 mm
120 mm
S235 JR

CHECK OF BASE PLATE AND BOLTS SYSTEM

The ultimate strength of section has been obtained by calculating the resultant of tensile and compression stress in the concrete and in the anchor bolts:

Mrd $=$ Mrd, $\mathrm{c}+\mathrm{Mrd}, \mathrm{s}$
where
$\begin{array}{llll}. \mathrm{Mrd}, \mathrm{c}=\mathrm{Nc}(\mathrm{yc}) \cdot \mathrm{ycg}= & 354.4 & \mathrm{KNm} & \text { contribution of concrete } \\ . \mathrm{Mrd}, \mathrm{s}=\Sigma \mathrm{Asi} \cdot \sigma \mathrm{si} \cdot(\mathrm{D} / 2-\mathrm{ysi})= & 559.6 & \mathrm{KNm} & \text { contribution of reinf orced bars }\end{array}$
. $\mathrm{Nc}(\mathrm{yc})=$ contribution of concrete (stress block hy pothesis)
. σ si $=$ tension in reinf orced bars
. $\mathrm{ycg}=$ distance between bary center of compressed zone and cross section centre
. $\mathrm{D}=$ external diameter of base plate
. ysi = distance between bolt axis and compressed size

from which

. Mrd = ultimate resistance of base plate and anchor bolt system: 914.0 KNm
. $\mathrm{ycg}=$ distance bary center of compressed zone and section centre:
323.7 mm

Static check:
$\eta s=$ Med $/ \mathrm{Mrd}=$
$0.481 \leq 1$
OK

Dy namic check :
$\eta \mathrm{d}=$ Med' / Mrd =
0.549
≤ 1
OK

The verification is checked

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

DESIGN INTERNAL FORCES IN ANCHOR BOLT

$N d t=\sigma d \cdot A=$	129.36	KN	axial force
$\mathrm{Vdt}=\mathrm{Vd} / \mathrm{nt}=$	1.62	KN	shear force
where			
. $\sigma d=N d^{\prime} / \mathrm{A} \pm \mathrm{Md}^{\prime} \mathrm{c} / \mathrm{J}=$	281.83	$\mathrm{N} / \mathrm{mmq}$	anchor bolt stress
. $\mathrm{A}=$	459	mmq	anchor bolt area
. $\mathrm{nt}=$	16		anchor bolt number
Nrd $=$	168.54	KN	axial design strength
. Vrd =	112.36	KN	shear design strength

Check:
Ndt / Nrd =
0.768
<1
OK

EMBEDMENT LENGTH OF ANCHOR BOLTS

The force (Nrd - Ra) is absorbed by the ring template:

$\mathrm{Rd}=$	79379	N	ring template resistance
$\mathrm{Ra}=\pi \cdot \mathrm{fbd} \cdot \varnothing \cdot \mathrm{La}=$	89166	N	design bond strength of anchor bolt

where

. $\mathrm{Nrd}=$	168545	N	design strength of anchor bolt
. $\varnothing=$	27	mm	diameter of anchor bolt
. $\mathrm{fbd}=0.32 \mathrm{~J} \mathrm{Rck} / \mathrm{Yc}=$	1.168	$\mathrm{~N} / \mathrm{mmq}$	design value ultimate bond stress
. Rck $=$	30	$\mathrm{~N} / \mathrm{mmq}$	cubic compressive strength
. $\mathrm{Yc}=$	1.5		safety material factor
La $=$	900	mm	embedment lenght

The minimun thickness of ring template is:
$\mathrm{a}=[3 \mathrm{p} /(4 \mathrm{fyd})] 1 / 2(\mathrm{Ld}-\varnothing)=12.00 \mathrm{~mm} \quad$ minimum thickness ring template
with

$. \mathrm{p}=\mathrm{Rd} /(\mathrm{Ld} \cdot \mathrm{Ld})=$	44.33	$\mathrm{daN} / \mathrm{cmq}$	design pressure on ring template
$. \mathrm{Ld}=$	120	mm	width of ring template
$. \mathrm{fyd}=$	275.0	$\mathrm{~N} / \mathrm{mmq}$	design y eld strength of base plate
$. \emptyset=$	27	mm	diameter of anchor bolt

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

CHECK OF THE OPENING DOOR

The shaft is checked at the lower and upper section of the opening door.

INPUT DATA:		
. bottom diameter of the shaft $=$	670	mm
. tilt of the shaft $=$	0.023	$\%$
. embedment length of the shaft $=$	0	mm
. opening door ground clearance $=$	400	mm
. height of the opening door $=$	700	mm

SHAFT DIAMETERS CORRESPONDING TO OPENING DOOR:

. shaft diameter lower end of the opening door $=660.8 \mathrm{~mm}$
. shaft diameter upper end of the opening door $=644.7 \mathrm{~mm}$

OPENING DOOR DATA:

. shaft diameter Dip $=$	660.8	mm	lower section
. shaft thickness $\mathrm{sp}=$	5	mm	
. width of the opening door $=$	205	mm	

A dimensionless factor is introduced to consider the partialization of the resistant section; the factor is measured as the ratio of the opening distance p and the mean diameter of the section:
. factor $\alpha=p /($ Dip $-s p)=0.3126$

The opening door is reinforced with metal frame:
$80 \times 20 \mathrm{~mm}$
. reinf orcement width $=$

80	mm
20	mm
0	mm
S275 JR	

. reinf ordement thickness =
. eccentricity =
. steel grade =

N.C.M. srI

$0,1951<\alpha<0,5556$

CHARACTERISTICS OF NOT REINFORCED SECTION:
. ex =
. $A=$
. $\mathrm{Jx}=$
. $\mathrm{Jy}=$
.tx =
. ty =
. $W x=$
. $\mathrm{Wy}=$
37.4 mm
91.8 cm 2
41646.6 cm 4
53185.4 cm 4
343.1 mm
102.5 mm
1213.9 cm 3
1609.7 cm 3

. reinf orcement width $=$	80	mm
. reinf orcement thickness $=$	20	mm

CHARACTERISTICS OF REINFORCED SECTION:

. At $=$	123.8	cm2
. x reinf orcement $=$	0.0	mm
. $\mathrm{tx}^{\prime}=$	252.9	mm
.ty ${ }^{\prime}=$	102.5	cm4
. Jx' $=$	70703.5	cm4
. Jy' $=$	56558.1	cm4
Wx1 = (shaft)	2795.8	cm3
. Wy2 = (shaft $)$	1711.8	cm3
. $\mathrm{W} \times 3=$ (shaft $)$	1845.3	cm3
Wps = (reinf orcement)	3321.1	cm3
Wpi = (reinf orcement)	2414.0	cm3
. er $=$	52.8	mm

N.C.M. srI

Maximum internal forces in the lower section:

$. \mathrm{NpI}=$	4443	daN
$. \mathrm{Mpl}=$	39146	daNm

Design strengths:

Mrx $=W \mathrm{~W} \cdot \eta \cdot \mathrm{Fyk} / \gamma \mathrm{m}=$	32073	daNm	not reinf orced
. Mry $=\mathrm{Wy} \cdot \eta \cdot \mathrm{Fyk} / \gamma \mathrm{m}=$	42533	daNm	not reinforced
. $\mathrm{Nrd}=(\mathrm{A} \cdot \eta \cdot \mathrm{Fyk}+$ Ar \cdot Fyk') $/ \gamma \mathrm{m}=$	330516	daN	
. Mrx1 $=\mathrm{Wx} 1 \cdot \eta \cdot$ Fyk $/ \gamma \mathrm{m}=$	73872	daNm	
. Mrx3 $=W \times 3 \cdot \eta \cdot F y k / \gamma m=$	48758	daNm	
. Mry $2=W y 2 \cdot \eta \cdot F y k / \gamma m=$	45230	daNm	
. Mrps $=$ Wps \cdot Fyk' $/ \gamma \mathrm{m}=$	91331	daNm	
. Mrpi $=$ Wpi \cdot Fyk' $/ \gamma \mathrm{m}=$	66385	daNm	

con

.Fyk $=$ Fyk' $=$	3550	daN/cmq	shaft	S355 JR
. $\gamma \mathrm{m}=$	2750	daN/cmq	reinforcement	S275 JR
	1		partial material factor	

Considering the ratio diameter / thickness = Dip / $\mathrm{sp}=$
132.16 ; the reduction factor of the characteristic y eld strength is equal to:
$\eta=[4546 /(D i p / s p)+0.4 \mathrm{fyk}] / 237=0.744$

CHECK :

$. N p / N r d+M p / M r x 1=$	$\mathbf{0 . 5 4}$	≤ 1	OK
$. N p / N r d+M p / M r x 3=$	$\mathbf{0 . 8 2}$	≤ 1	OK
$\cdot N p / N r d+M p / M r y 2=$	$\mathbf{0 . 8 8}$	≤ 1	OK
$\cdot N p / N r d+M p / M r p i=$	$\mathbf{0 . 6 0}$	≤ 1	OK

N.C.M. srI

Via Bramante, 24-20020 MAGNAGO (Mi) - Haly

OPENING DOOR DATA:

. shaft diameter Dsp =
. shaft thickness $\mathrm{sp}=$
. width of the opening door $=$
. factor $\alpha=\mathrm{p} /(\mathrm{Dsp}-\mathrm{sp})=$
. reinf orcement width =
. reinf ordement thickness =
. eccentricity $=$
. steel grade =
$0,1951<\alpha<0,5556$

CHARACTERISTICS OF NOT REINFORCED SECTION:
. ex =
. $A=$
. $\mathrm{Jx}=$
. Jy =
. $\mathrm{tx}=$
.ty =
. $W x=$
. $\mathrm{Wy}=$
. reinf orcement width =
. reinforcement thickness $=$
37.6 mm
89.3 cm 2
38350.0 cm 4
49335.7 cm 4
334.7 mm
102.5 mm
1145.9 cm 3
1530.5 cm 3

80 mm
20 mm

CHARACTERISTICS OF REINFORCED SECTION:

. At $=$	121.3	cm2
. x rinforzo $=$	0.0	mm
. $\mathrm{tx}^{\prime}=$	244.8	mm
. ty ${ }^{\prime}=$	102.5	cm4
. Jx' $=$	65839.1	cm4
. Jy' $=$	52708.4	cm4
. Wx1 = (shaft)	2689.5	cm3
. Wy2 $=$ (shaft)	1635.1	cm3
. $\mathrm{W} \times 3=$ (shaft)	1757.3	cm3
. Wps = (reinf orcement)	3214.9	cm3
. Wpi = (reinf orcement)	2311.8	cm3
. er $=$	52.3	mm

644.7	mm	upper section
5	mm	
205	mm	

0.3205

80	mm
20	mm
0	mm
S275 JR	

mm
mm
mm
JR

N.C.M. srI

Maximum internal forces in the upper section:

$. \mathrm{Npu}=$	4443	daN
$. \mathrm{Mpu}=$	37354	daNm

Design strengths:

Mrx $=W x \cdot \eta \cdot$ Fyk $/ \gamma \mathrm{m}=$	30425	daNm	not reinf orced
. Mry $=\mathrm{Wy} \cdot \eta \cdot \mathrm{Fyk} / \gamma \mathrm{m}=$	40637	daNm	not reinf orced
. $\mathrm{Nrd}=(\mathrm{A} \cdot \eta \cdot \mathrm{Fyk}+$ Ar \cdot Fyk') $/ \gamma \mathrm{m}=$	324991	daN	
. Mrx1 $=\mathrm{Wx} 1 \cdot \eta \cdot \mathrm{Fyk} / \gamma \mathrm{m}=$	71410	daNm	
. Mrx3 $=W \times 3 \cdot \eta \cdot F y k / \gamma m=$	46659	daNm	
. Mry $2=\mathrm{Wy2} 2 \cdot \eta \cdot \mathrm{Fyk} / \gamma \mathrm{m}=$	43414	daNm	
. Mrps $=$ Wps \cdot Fyk' $/ \gamma \mathrm{m}=$	88408	daNm	
. Mrpi $=$ Wpi $\cdot \mathrm{Fyk}^{\prime} / \gamma \mathrm{m}=$	63574	daNm	

where

Fyk =	3550	daN/cmq	shaft	S355 JR
Fyk' =	2750	daN/cmq	reinf orcement	S275 JR
. $\gamma \mathrm{m}=$	1		partial material	

CHECK:

$. N p / N r d+M p / M r x 1=$	$\mathbf{0 . 5 4}$	≤ 1	OK
$. N p / N r d+M p / M r x 3=$	$\mathbf{0 . 8 1}$	≤ 1	OK
$\cdot N p / N r d+M p / M r y 2=$	$\mathbf{0 . 8 7}$	≤ 1	OK
$\cdot N p / N r d+M p / M r p i=$	$\mathbf{0 . 6 0}$	≤ 1	OK

[^0]: . $\eta \mathrm{p}=\mathrm{Mpd} / \mathrm{Mrd}=$

